

СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ МНОГОФУНКЦИОНАЛЬНЫЙ ПСЧ-4ТМ.05МК

Руководство по эксплуатации Часть 2 Методика поверки ИЛГШ.411152.167РЭ1

Содержание

1	Операции и средства поверки	4
2	Требования безопасности	5
3	Условия поверки и подготовка к ней	5
4	Проведение поверки	11
5	Оформление результатов поверки	26
Прил	ожение А Схемы подключения счетчика к поверочной установке	27
Прил	южение Б Схема подключения счетчиков к компьютеру	32

Настоящая методика составлена с учетом требований Приказа Минпромторга № 1815 от 02.07.15, РМГ 51-2002 в соответствии с требованиями ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.22-2012, ГОСТ 31819.23-2012, ГОСТ 8.584-2004, ГОСТ 22261-94 и устанавливает методику первичной, периодической и внеочередной поверки счетчиков, а также объем, условия поверки и подготовку к ней.

Настоящая методика распространяется на счетчики электрической энергии многофункциональные ПСЧ-4ТМ.05МК (далее счетчики):

- трансформаторного включения ПСЧ-4ТМ.05МК.00 ПСЧ-4ТМ.05МК.19;
- непосредственного включения ПСЧ-4ТМ.05МК.20 ПСЧ-4ТМ.05МК.25;
- двунаправленные ПСЧ-4ТМ.05МК.00 ПСЧ-4ТМ.05МК.07, ПСЧ-4ТМ.05МК.20, ПСЧ-4ТМ.05МК.21 (далее двунаправленные), предназначенные для учета активной и реактивной энергии прямого и обратного направления;
- однонаправленные ПСЧ-4ТМ.05МК.08- ПСЧ-4ТМ.05МК.11, ПСЧ-4ТМ.05МК.22, ПСЧ-4ТМ.05МК.23 (далее однонаправленные), предназначенные для учета только активной энергии независимо от направления (учет по модулю).
- комбинированные ПСЧ-4ТМ.05МК.12 ПСЧ-4ТМ.05МК.19, ПСЧ-4ТМ.05МК.24, ПСЧ-4ТМ.05МК.25 (далее комбинированные), предназначенные для учета активной энергии независимо от направления (учет по модулю) и реактивной энергии прямого и обратного направления;

До ввода в эксплуатацию и после ремонта проводят первичную поверку.

Первичной поверке подлежит каждый счетчик.

Интервал между поверками 12 лет.

Периодической поверке подлежат счетчики, находящиеся в эксплуатации или на хранении по истечении интервала между поверками.

Внеочередную поверку проводят при эксплуатации счетчиков в случае:

- повреждения знака поверки и в случае утраты формуляра;
- ввода в эксплуатацию счетчика после длительного хранения (более одного интервала между поверками);
- при известном или предполагаемом ударном воздействии на счетчик или неудовлетворительной его работе;
- продажи (отправки) потребителю счетчика, не реализованного по истечении срока, равного одному интервалу между поверками.

1 Операции и средства поверки

1.1 Выполняемые при поверке операции, а также применяемые при этом средства поверки указаны в таблице 1.

Таблица 1- Операции и средства поверки

таолица 1— Операции и средства п		II
Наименование операций	Номер пункта	Наименование средств поверки, ос-
	методики по-	новные технические характеристики
	верки	
Внешний осмотр	4.1	
Проверка электрической проч-	4.2	Прибор для испытания электрической
ности изоляции		прочности УПУ-10. Испытательное
		напряжение до 10 кВ, погрешность
		установки напряжения ±5 %
Опробование:		Установка для поверки счётчиков
- проверка функционирования	4.3	электрической энергии УАПС-1М:
устройства индикации и кнопок		 диапазон напряжений (161-265) B;
управления		диапазон токов (0,01-100) A;
- подтверждение соответствия ПО	4.4	
- проверка функционирования	4.5	1
электронных пломб	4.5	ной/реактивной энергии $\pm (0,15/0,3)$ %;
_	4.6	– погрешность измерения тока и на-
- проверка внутренних логиче-	4.0	пряжения ±0,3 %.
ских структур и массивов	4.7	Программируемый трехфазный источ-
Проверка стартового тока (чув-	4.7	ник фиктивной мощности МК7006:
ствительности)	4.0	диапазон напряжений (40-265) B;
Проверка отсутствия самохода	4.8	диапазон токов (0,001-10) A.
Определение основной погреш-	4.9	Эталонный трехфазный ваттметр-
ности измерения энергии, мощ-		счетчик ЦЭ7008:
ности, напряжения, тока и часто-		– погрешность измерения актив-
ты сети		ной/реактивной энергии $\pm (0.05/0.1)$ %;
Определение точности хода	4.10	погрешность измерения напряжения
встроенных часов		и тока $\pm 0,1$ %.
		Частотомер электронно-счетный Ч3-63:
		 погрешность измерения 5·10⁻⁷;
		Секундомер СОСпр-2б-2: цена деле-
		ния 0,2 с, класс точности 2.
		Источник питания Б5-70:
		 напряжение (0-24) В, ток до 50 мА;
		- погрешность индикации ±200 мВ,
		±30mA.
		Персональный компьютер с операци-
		онной системой «Windows 98» -
		«Windows Vista».Преобразователь
		интерфейса USB в RS-485 ПИ-2.
		Устройство сопряжение оптическое
		УСО-2. Программное обеспечение
		«Конфигуратор СЭТ-4ТМ», версии не
		ниже 18.04.16.

- 1.2 При первичной и периодической поверке все операции, указанные в таблице 1 обязательны.
- 1.3 Допускается проведение поверки счетчиков с применением средств поверки, не указанных в таблице 1, но обеспечивающих определение и контроль метрологических характеристик поверяемых счетчиков с требуемой точностью.

Допускается проведение поверки на установке УАПС-1 с максимальным током 50 А.

1.4 При получении отрицательного результата в процессе выполнения любой из операций поверки счетчик бракуют и его поверку прекращают. После устранения недостатков, вызвавших отрицательный результат, счетчик вновь представляют на поверку.

2 Требования безопасности

- 2.1 Помещение для проведения поверки должно соответствовать правилам техники безопасности и производственной санитарии.
- 2.2 При проведении поверки должны быть соблюдены требованиями «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей», а так же требования раздела 1 руководства по эксплуатации ИЛГШ.411152.167РЭ и соответствующих разделов из документации на применяемые средства измерений и испытательное оборудование.
- 2.3 К работе на поверочной установке следует допускать лиц, прошедших инструктаж по технике безопасности и имеющих удостоверение о проверке знаний, если иное не установлено в эксплуатационных документах на поверочную установку.

3 Условия поверки и подготовка к ней

- 3.1 Порядок представления счетчика на поверку должны соответствовать требованиям «Порядка проведения поверки средств измерений, требованиям к знаку поверки и содержанию свидетельства о поверке».
- 3.2 При проведении поверки должны соблюдаться условия, установленные в ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.22-2012, ГОСТ 31819.23-2012:
 - температура окружающего воздуха (23±2) °С;
 - относительная влажность воздуха (30–80) %;
 - атмосферное давление (630-795) мм рт. ст;
 - внешнее магнитное поле не превышает естественного фона;
 - частота измерительной сети (50±0,3) Гц;
- форма кривой напряжения и тока измерительной сети синусоидальная с K_r не более 2 %;
- отклонение каждого из фазных или линейных напряжений от среднего значения $\pm 1,0\%$;
 - отклонение тока в каждой из фаз от среднего значения $\pm 1,0\%$;
- значение сдвига фаз для каждого тока от соответствующего фазного напряжения независимо от коэффициента мощности не должны отличаться друг от друга более чем на 2°

- 3.3 Перед проведением поверки необходимо изучить ИЛГШ.411152.167РЭ «Руководство по эксплуатации. Часть 1».
- 3.4 Поверка должна проводиться на аттестованном оборудовании и с применением средств поверки имеющих действующий знак поверки.
- 3.5 К поверке счетчиков допускаются лица, аттестованные в качестве поверителей в установленном порядке.
- 3.6 Если в счетчик установлен дополнительный интерфейсный модуль, то его следует отключить от цепей счетчика и подключить обратно по окончанию поверки.
- 3.7 Для определения погрешностей измерения активной и реактивной энергии и мощности прямого и обратного направления, частоты, напряжения и тока:
- счетчик непосредственного включения должен подключаться к установке для проверки счетчиков электрической энергии УАПС-1М (далее поверочная установка) по схеме, приведенной на рисунке A.1 приложения A, испытательные выходы счетчика должны подключаться по схеме, приведенной на рисунке A.2 приложения A;
- счетчик трансформаторного включения должен подключаться к установке, состоящей из трехфазного ваттметр-счетчика эталонного ЦЭ7008 и трехфазного источника фиктивной мощности МК7006, (далее поверочная установка) по схеме:
 - а) приведенной на рисунке А.3 приложения А для определения погрешностей измерения активной энергии и мощности прямого и обратного направления;
 - b) приведенной на рисунке A.4 приложения A для определения погрешностей измерения реактивной энергии и мощности прямого и обратного направления.

Назначение и расположение контактов интерфейса RS-485, испытательных выходов, цифрового входа и резервного питания счетчика приведены на рисунке A.5 приложения A.

3.8 Поверка должна проводиться с применением компьютера и программного обеспечения «Конфигуратор СЭТ-4ТМ».

Подключение счетчика к компьютеру для работы через интерфейс RS-485 должно производиться по схеме, приведенной на рисунке Б.1 приложения Б.

Подключение счетчика к компьютеру для работы через оптопорт должно производиться по схеме, приведенной на рисунке Б.2 приложения Б.

- 3.9 Подготовка к работе компьютера, программы «Конфигуратор СЭТ-4ТМ» и установка связи со счетчиком
 - 3.9.1 Включить питание компьютера и дождаться загрузки операционной системы.
- 3.9.2 Установить на компьютере программное обеспечение «Конфигуратор СЭТ-4ТМ», если оно не было установлено ранее, из дистрибутивного пакета, поставляемого заводом-изготовителем счетчиков. Порядок установки программы «Конфигуратора СЭТ-4ТМ» на компьютере пользователя описан в файле, входящем в состав поставляемого программного обеспечения конфигуратора. После установки программы следует пользоваться загрузочным модулем программы «Конфигуратор СЭТ-4ТМ» той версии, которая указана в таблице 1 или более поздней.
- 3.9.3 Вызвать программу «Конфигуратор СЭТ-4ТМ». При этом на экране должна появиться генеральная форма программы, приведенная на рисунке 1, содержащая панель инструментов, меню режимов и рабочий стол для вызова подчиненных форм из меню режимов.

- 3.9.4 Посредством формы «Параметры соединения» настроить коммуникационные параметры конфигуратора для работы через оптопорт, для чего:
 - нажать кнопку «Оптопорт»;
- в окне «Порт» установить номер СОМ-порта компьютера (COM1-COM255) к которому подключено устройство сопряжение оптическое УСО-2;
- снять флаги «Автоопределение типа протокола», «Пакетный протокол», «Протокол Y-NET»;
 - установить флаг «CRC»;
 - в окне «Время ожидания ответа счетчика» ввести 150 мс и нажать Enter;
 - в окне «Системный TimeOut» ввести 30 мс и нажать Enter;
 - в окне «Перезапросов при отсутствии ответа» установить 1.

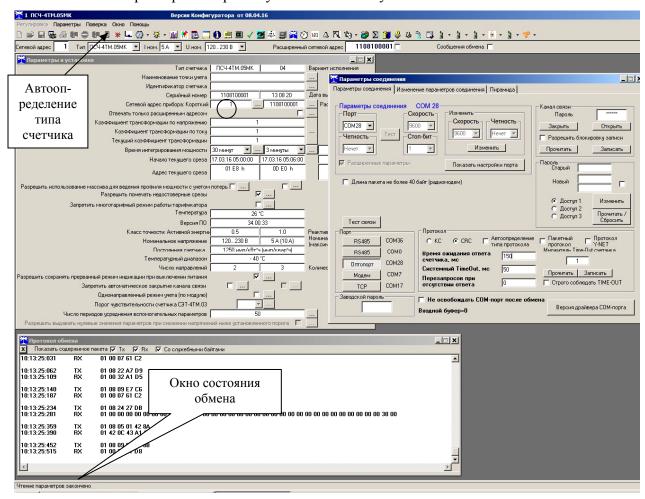


Рисунок 1 - Генеральная форма программы «Конфигуратор СЭТ-4ТМ» с открытыми подчиненными формами «Параметры соединения», «Параметры и установки», «Протокол обмена»

- 3.9.5 Проверить связь со счетчиком через оптопорт. Для чего:
- подключить головку устройства сопряжения оптического к оптопорту проверяемого счетчика;
- снять флаг «Расширенный сетевой адрес» на генеральной форме программы, если он установлен;
- в окне «Сетевой адрес» генеральной формы программы установить адрес «0» (общий адрес);

- нажать кнопку «Автоопределение типа счетчика» на панели инструментов генеральной формы программы;
- убедиться, что появилась форма «Параметры и установки», заполненная данными, прочитанными из счетчика, а в информационном окне генеральной формы (левый нижний угол экрана) появилось сообщение «Чтение параметров закончено» (рисунок 1);
- прочитать короткий индивидуальный адрес счетчика из окна «Сетевой адрес прибора: Короткий» формы «Параметры и установки» и вписать его в окно «Сетевой адрес» генеральной формы программы;
- убедиться, что в окнах генеральной формы «Тип счетчика», «Іном», «Ином» установились правильные значения для проверяемого счетчика.
- 3.9.6 Проверить настройки интерфейса RS-485 счетчика чтением параметров настройки через оптопорт. Для чего:
- открыть вкладку «Изменение параметров соединения» формы «Параметры соединения» (рисунок 2);
 - нажать кнопку «Прочитать» в группе элементов «Канал 1»;
- убедиться, что в информационном окне генеральной формы программы (левый нижний угол экрана) появилось сообщение «Обмен успешно завершен», а в окнах вкладки «Скорость», «Четность» отображаются прочитанные значения «9600» и «Нечет» соответственно;
- если это не так, то запомнить настройки RS-485, установленные потребителем на стадии эксплуатации, чтобы их вернуть по окончанию поверки счетчика. В окне «Скорость» установить значение «9600» из списка окна, в окне «Четность» установить значение «Нечет» и нажать кнопку «Изменить»;
- убедиться, что в информационном окне генеральной формы (левый нижний угол экрана) появилось сообщение «Обмен успешно завершен», свидетельствующее о том, что интерфейс RS-485 счетчика настроен на скорость обмена 9600 бит/с с битом контроля нечетности.

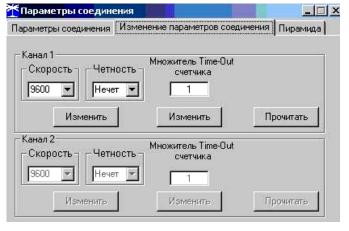


Рисунок 2 — Форма «Параметры соединения», вкладка «Изменение параметров соединения»

- 3.9.7 Проверить связь со счетчиком через интерфейс RS-485. Для чего:
- подключить счетчик к компьютеру по схеме, приведенной на рисунке Б.1 приложения Б;
 - нажать одну из кнопок «RS485» на форме «Параметры соединения»;
- в окне «Порт» установить номер СОМ-порта компьютера (COM1-COM255), к которому подключен преобразователь интерфейса ПИ-2;
 - в окне «Скорость» установить «9600»;
 - в окне «Четность» установить «Нечет»;

- в окне «Стоп-бит» установить «1»;
- в окне «Время ожидания ответа счетчика» установить 150 мс;
- в окне «Системный TimeOut» установить 30 мс;
- нажать кнопку «Автоопределение типа счетчика» на панели инструментов генеральной формы программы;
- убедиться, что появилась форма «Параметры и установки», заполненная данными, прочитанными из счетчика по интерфейсу RS-485, а в информационном окне генеральной формы (левый нижний угол экрана) появилось сообщение «Чтение параметров закончено» (рисунок 1).
- 3.9.8 Для двунаправленных счетчиков и комбинированных счетчиков, посредством формы «Автоопределение типа счетчика», снять флаг «Однонаправленный режим учета по модулю», если он установлен. Восстановить флаг по окончанию поверки. Для однонаправленных счетчиков этот флаг снять нельзя и он должен быть установлен на заводе изготовителе.
 - 3.10 Конфигурирование испытательных выходов и цифрового входа
- 3.10.1 Перед началом внеочередной и периодической поверки с помощью программы «Конфигуратор СЭТ-4ТМ», формы «Конфигурирование испытательных выходов и цифровых входов» прочитать и запомнить конфигурацию выходов и входов, установленную потребителем на стадии эксплуатации, чтобы вернуть по окончанию поверки счетчика.
- 3.10.2 Для работы испытательных выходов в основном режиме А и поверочном режиме В с возможностью переключения режимов от внешнего напряжения, подаваемого на цифровой вход, необходимо произвести конфигурирование испытательных выходов с помощью программы «Конфигуратор СЭТ-4ТМ», формы «Конфигурирование испытательных выходов»:
- как показано на рисунке 3 для определения погрешности измерения активной энергии прямого и обратного направления;
- как показано на рисунке 4 для определения погрешности измерения реактивной энергии прямого и обратного направления.

Для комбинированных и однонаправленных счетчиков испытательный выход «Канал 1» должен быть настроен на формирование импульсов телеметрии «Импульсы А+» при проверке погрешности измерения активной энергии прямого и обратного направления.

онфигурирован	ие Телеуправле	ние и телесигналі	изация				
Сетевой адрес	Режим испытательных выходов	Канал О Выход Контакты 13,17	Канал 1 Выход Контакты 14,18	Канал 2	Канал З	Канал 4 Выход Индикатор	Канал 5 Вход Контакты 11
60	Определяется входом контакты 11,15	Импульсы А+	Импульсы А-	Отключен	Отключен	Импульсы А+	Управлени режимом Ал

Рисунок 3 - Конфигурирование испытательных выходов для определения погрешности измерения активной энергии прямого и обратного направления

Онфигурирование Телеуправление и телесигнализация								
Сетевой адрес	Режим испытательных выходов	Канал 0 Выход Контакты 13,17	Канал 1 Выход Контакты 14,18	Канал 2	Канал З	Канал 4 Выход Индикатор	Канал 5 Вход Контакты 11,	
60	Определяется входом контакты 11,15	Импульсы R+	Импульсы R-	Отключен	Отключен	Импульсы А+	Управлени режимом А/	

Рисунок 4 - Конфигурирование испытательных выходов для определения погрешности измерения реактивной энергии прямого и обратного направления

3.10.3 Переключение из основного режима телеметрии (A) в поверочный режим телеметрии (B) должно производиться путем подачи на цифровой вход напряжения 12 B, как показано на рисунке 5.

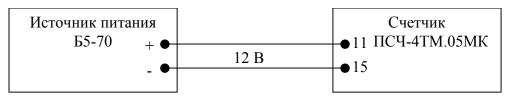


Рисунок 5

- 3.11 Перед началом поверки установить внутреннее время счетчика, посредством программы «Конфигуратор СЭТ-4ТМ», формы «Время»\«Установка и коррекция». При этом время компьютера должно быть установлено по шестому сигналу точного времени или любому другому источнику точного времени.
- 3.12 Поверку проводить при установленных единичных коэффициентах трансформации по напряжению и току.

4 Проведение поверки

4.1 Внешний осмотр

- 4.1.1 При внешнем осмотре должно быть установлено соответствие счетчика следующим требованиям:
- лицевая панель счетчика должна быть чистой и иметь четкую маркировку в соответствии с требованиями ГОСТ 31818.11-2012;
- во все резьбовые отверстия токоотводов должны быть ввернуты до упора винты с исправной резьбой;
- на крышке зажимной колодки счетчика должна быть нанесена схема подключения счетчика к электрической сети;
 - на табло индикатора счетчика отсутствуют сообщения об ошибках;
 - в комплект счетчика должен входить формуляр и руководство по эксплуатации.

4.2 Проверка электрической прочности изоляции

- 4.2.1 Перед началом проверки электрической прочности изоляции убедиться, что дополнительный интерфейсный модуль, если он установлен в счетчик, отключен от цепей счетчика.
- 4.2.2 Проверку электрической прочности изоляции напряжением переменного тока частотой 50 Гц проводить в соответствии с требованиями ГОСТ 31819.22-2012 для счетчиков трансформаторного включения, прикладывая испытательные напряжения на контакты колодки счетчиков, указанные в таблице 2, и в соответствии с требованиями ГОСТ 31819.21-2012 для счетчиков непосредственного включения, прикладывая испытательные напряжения на контакты колодки счетчиков, указанные в таблице 3.

Таблица 2 – Номера контактов счетчика трансформаторного включения, между которыми проводят проверку электрической прочности изоляции

Номера конта	Номера контактов, между которыми прикладывается					
И	спытательное напряжение	ного напряжения				
1–10, 19–20	«Земля», 11–18, 21-26	4 кВ				
1	«Земля», 2, 4–26	2 кВ				
4	«Земля», 1–3, 5, 7–26	2 кВ				
7	«Земля», 1–6, 8, 10–26	2 кВ				
1–10	«Земля», 11–26	2 кВ				
11, 15	«Земля», 1–10, 12–14, 16–26	2 кВ				
12, 16 ¹⁾	«Земля», 1–11, 13–15, 17–22	2 кВ				
13, 17	«Земля», 1–12, 14–16, 18–26	2 кВ				
14, 18	«Земля», 1–13, 15–17, 19–26	2 кВ				
19–20	«Земля», 1–18, 21–26	2 кВ				
21, 22 ¹⁾	«Земля», 1–20, 23–26	2 кВ				

¹⁾ Испытание проводить без дополнительного интерфейсного модуля.

Примечание - «Землей» является проводящая пленка из фольги, охватывающая счетчик и присоединенная к плоской проводящей поверхности, на которой установлен поколь счетчика.

Таблица 3 – Номера контактов счетчика непосредственного включения, между которыми

проводят проверку электрической прочности изоляции

Номера контак	Номера контактов, между которыми прикладывается					
ИС	испытательное напряжение					
1–10, 19–20	«Земля», 11–18, 21–26	4 кВ				
11, 15	«Земля», 1–10, 12–14, 16–26	2 кВ				
12, 16 ¹⁾	«Земля», 1–11, 13–15, 17-22	2 кВ				
13, 17	«Земля», 1–12, 14–16, 18–26	2 кВ				
14, 18	«Земля», 1–13, 15–17, 19–26	2 кВ				
19–20	«Земля», 1–18, 21–26	2 кВ				
$21, 22^{1}$	«Земля», 1–20, 23–26	2 кВ				

¹⁾ Испытание проводить без дополнительного интерфейсного модуля.

Примечание - «Землей» является проводящая пленка из фольги, охватывающая счетчик и присоединенная к плоской проводящей поверхности, на которой установлен цоколь счетчика.

4.2.3 Мощность источника 50 Гц испытательного напряжения должна быть не менее 500 В·А. Увеличивать напряжение в ходе испытания следует плавно, начиная со 100 В и далее равномерно или ступенями, не превышающими 10 % установленного напряжения, в течение от 5 до 10 с до 2 кВ или 4 кВ. При достижении испытательного напряжения, счетчик выдерживают под его воздействием в течение 1 мин, контролируя отсутствие искрения, пробивного разряда или пробоя. Затем испытательное напряжение плавно уменьшают.

Результаты поверки считают положительными, если не произошло пробоя изоляции и ни один импульс не вызвал образования дуги. Появление коронного разряда или шума не является признаком неудовлетворительных результатов испытаний.

- 4.3 Проверка функционирования устройства индикации и кнопок управления
- 4.3.1 Подать на параллельные цепи счетчика номинальное напряжение и убедиться, что в течение 1,5 с, включаются все элементы индикации: курсоры, пиктограммы и все сегменты цифровых индикаторов. Если времени анализа оказалось недостаточным, то включить тест устройства индикации, для чего:
 - открыть форму конфигуратора «Управление режимами индикации»;
 - нажать кнопку «Тест УИ», расположенную на поле формы.

При этом включаются все элементы индикации табло ЖКИ на время 5 с. Еще раз убедиться, что включаются все элементы индикации.

4.3.2 Нажать кнопку НОМЕР ТАРИФА и удерживать ее в нажатом состоянии (более 1 с) для перевода счетчика в режим индикации основных параметров, а именно текущей активной энергии.

Убедиться, что на индикаторе отображается номер текущего тарифа, пиктограмма «ТА-РИФ» курсор вида энергии A+ или A- (в зависимости от текущего направления), величина накопленной энергии от сброса по текущему тарифу, пиктограмма размерности «кВт ч» и пиктограммы наличия фазных напряжений «ФАЗА 1», «ФАЗА 2», «ФАЗА 3». Для однонаправленных и комбинированных счетчиков может отображаться только курсор A+ независимо от направления.

Примечание - Аббревиатурам A+, A-, R+, R- соответствуют следующие условные обозначения, нанесенные на шкалу счетчика:

При отсутствии одного или двух фазных напряжений, соответствующие пиктограммы «ФАЗА 1», «ФАЗА 2», «ФАЗА 3» будут мигать с периодом 1 с.

Если нарушена последовательность чередования фазных напряжений, подключенных к счетчику, то будут мигать сразу три пиктограммы фазных напряжений.

Если счетчик содержит внутреннюю ошибку, то на цифровом индикаторе времени и даты будет отображаться сообщение об ошибке в виде: E-xx, где xx — номер ошибки. В противном случае на табло времени и даты поочередно отображаются: текущее время и дата.

4.3.3 Нажать кнопку РЕЖИМ ИНДИКАЦИИ и удерживать ее в нажатом состоянии (более 1 секунды) для перевода счетчика в режим индикации вспомогательных параметров.

Установить режим индикации мгновенных мощностей коротким нажатием (менее 1 с) кнопки РЕЖИМ ИНДИКАЦИИ. В этом режиме отображаются: активная, реактивная и полная мгновенные мощности по каждой фазе сети и по сумме трех фаз с размерностями «Вт» («кВт», «МВт»), «ВАр» («кВАр», «МВАр»), «ВА», («кВА», «МВА») соответственно и отсутствует индикация символа «П» на табло номера тарифа.

Убедиться, что при индикации мгновенных мощностей каждое последующее короткое нажатие кнопки ВИД ЭНЕРГИИ переводит счетчик в режим индикации следующей мощности в последовательности: активная, реактивная, полная с размерностями «Вт» («кВт», «МВт»), «ВАр» («кВАр», «МВАр»), «ВА» («кВА», «МВА») соответственно, и так по кругу.

Убедиться, что каждое последующее короткое нажатие кнопки НОМЕР ТАРИФА изменяет номер фазы, по которой индицируется выбранный параметр в последовательности: «ФАЗА 1», «ФАЗА 2», «ФАЗА 3», «ФАЗА 123» (сумма фаз), и так по кругу.

4.3.4 Нажать одновременно кнопки РЕЖИМ ИНДИКАЦИИ и ВИД ЭНЕРГИИ и удерживать их в нажатом состоянии (более 1 с) для перевода счетчика в режим индикации технологических параметров.

В этом режиме отображаются:

- версия программного обеспечения (ПО) счетчика с индикацией в двух старших разрядах основного табло символов «по»;
- контрольная сумма метрологически значимой части ПО с индикацией в трех старших разрядах основного табло символов «crc».

Убедиться, что перечисленные выше параметры индицируются по кругу при каждом последующем коротком нажатии кнопки РЕЖИМ ИНДИКАЦИИ, а их значения соответствуют:

- версия $\Pi O 34.00.XX;$
- контрольная сумма 0х782Е.

Где XX – номер версии метрологически незначимой части ПО.

4.3.5 Для проверки кнопки ручного сброса утренних и вечерних максимумов мощности перевести счетчик в режим индикации основных параметром длинным нажатием кнопки НОМЕР ТАРИФА.

Установить режим индикации максимумов мощности по первому массиву профиля перебором основных режимов индикации коротким нажатием кнопки РЕЖИМ ИНДИКАЦИИ. При этом должна включиться пиктограмма «МАХ», а на индикаторе номера тарифа должна индицироваться цифра «1».

Нажать кнопку СБРОС. При этом значения утренних и вечерних максимумов должны сброситься, а на индикаторах значения максимума мощности и времени фиксации максимума должны индицироваться черточки.

4.3.6 Для счетчика с резервным блоком питания убедиться в работоспособности устройства индикации и кнопок управления при питании от резервного источника переменного и постоянного тока и при отсутствии напряжений в измерительных цепях, повторив действия п.п. 4.3.1-4.3.5.

Следует иметь в виду, что при работе счетчика от резервного источника питания при отсутствии напряжений в измерительных цепях, на табло времени и даты будет индицироваться сообщение Е-39 (работа от резервного питания), которое не является ошибкой.

Результаты поверки считаются положительными, если на индикаторе отображается информация и режимы индикации управляются кнопками управления, как описано в п. 4.3.

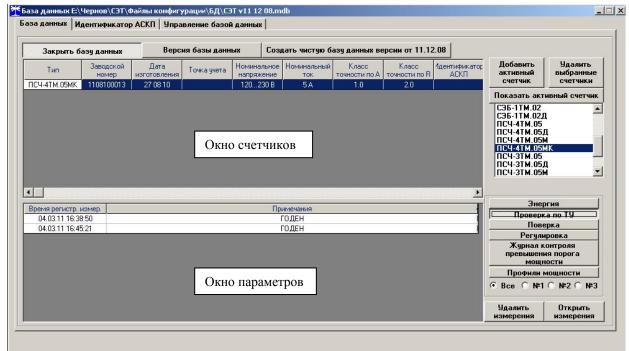
- 4.4 Подтверждение соответствия ПО
- 4.4.1 Проверку идентификационных характеристик программного обеспечения (ПО) счетчика проводят в процессе проверки функционирования устройства индикации, описанной в п. 4.3.4.

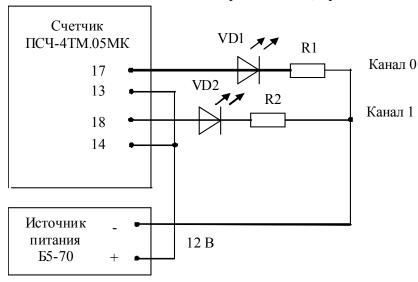
Результаты поверки считаются положительными, если версия ПО счетчика 34.00.XX, а контрольная сумма метрологически значимой части ПО 782E.

- 4.5 Проверка функционирования электронных пломб
- 4.5.1 Для проверки функционирования электронных пломб открыть форму конфигуратора «Журналы событий» из меню «Параметры» «Время».
 - 4.5.2 Проверить функционирование электронной пломбы крышки зажимов, для чего:
 - закрыть крышку зажимов;
 - включить счетчик;
- прочитать и запомнить содержимое верхней строки журнала «Открытие/закрытие защитной крышки контактной колодки», которая должна содержать штамп времени открытия и штамп времени закрытия крышки;
 - выключить счетчик;
- открыть и, через 3-5 секунд, закрыть крышку зажимов в выключенном состоянии счетчика;
- включить счетчик и прочитать верхнюю строку журнала «Открытие/закрытие защитной крышки контактной колодки»;
- убедиться, что в верхней строке журнала зафиксировалось время открытия/закрытия крышки зажимов в выключенном состоянии счетчика.
- 4.5.3 Проверить функционирование электронной пломбы крышки счетчика, аналогично описанному в п. 4.5.2, с той лишь разницей, что открывать/закрывать следует крышку счетчика после снятия крепежных винтов, а читать записи журнала «Вскрытия счетчика».

Результаты поверки считают положительными, если формируются записи в журналах «Открытие/закрытие защитной крышки контактной колодки» и «Вскрытия счетчика» при открытии/закрытии соответствующих крышек.

- 4.6 Проверка внутренних логических структур и массивов
- 4.6.1 Проверку внутренних логических структур счетчика, а также проверку функционирования интерфейса связи RS-485 и оптического порта, проводить с применением компьютера и программного обеспечения «Конфигуратор СЭТ-4ТМ».
- 4.6.2 Подготовить к работе компьютеры и «Конфигуратор СЭТ-4ТМ» в соответствии с требованиями п.п. 3.8, 3.9 настоящей методики.
- 4.6.3 Подключить счетчик к поверочной установке, установить номинальное напряжение и отключить ток.
- 4.6.4 Открыть форму «Проверка функционирования по п. 1.2.20 ТУ» из меню «Поверка», установить все флажки и нажать кнопку «Прочитать из прибора» на панели инструментов генеральной формы программы «Конфигуратор СЭТ-4ТМ».
- 4.6.5 Программа производит последовательную проверку операций считывания параметров и данных и проверку внутренних логических структур и массивов. Последовательность операций проверки и ее результаты отображаются в строках информационного окна формы. По окончанию проверки выдается результат в строке «Соответствие требованиям п. 1.2.20 ТУ» в виде сообщений «ДА» или «НЕТ» с предложением сохранения протокола проверки в базе данных конфигуратора.
- 4.6.6 Если при внеочередной или периодической поверке общий результат проверки отрицательный, то необходимо просмотреть все строки таблицы проверки параметров, имеющие заключение «НЕТ». Контекстная подсказка по несоответствию параметра может быть получена путем наведения указателя манипулятора «мышь» на сообщение «НЕТ». Если несоответствие связано с параметром, измененным пользователем на стадии эксплуатации, то его необходимо запомнить, установить в соответствии с требованиями контекстной подсказки (параметры по умолчанию завода-изготовителя) и повторить проверку по п. 4.6. По окончанию проверки параметр должен быть восстановлен.
- 4.6.7 Для сохранения протокола поверки в базе данных конфигуратора необходимо создать базу данных, если она не создана, и присвоить ей имя. Для создания базы данных нажать кнопку «Создать чистую базу данных» на форме «База данных» из меню «Параметры». Внешний вид формы базы данных приведен на рисунке. 6.




Рисунок 6 – Формы «База данных»

- 4.6.8 При утвердительном ответе на предложение сохранения протокола в базе данных конфигуратор запрашивает путь к базе с выдачей формы обзора файлов компьютера. После выбора файла требуемой базы данных в форме обзора, конфигуратор записывает протокол в указанную базу.
- 4.6.9 Для просмотра, сохраненного в базе протокола, нужно в окне счетчиков выделить требуемый счетчик (нажатием левой кнопки манипулятора «мышь») и нажать кнопку «Проверка по ТУ» на поле формы. При этом в окне параметров будет выведен список сохраненных протоколов по выбранному счетчику с указанием даты проверки. Выделить требуемый протокол в окне параметров (нажатием левой кнопки манипулятора «мышь») и нажать кнопку «Открыть измерение» на поле формы. При этом формируется файл протокола в формате Word с возможностью просмотра, сохранения в файле под указанным именем или получения твердой копии на бумаге.

Результаты поверки считают положительными, если по окончанию проверки в строке «Соответствие требованиям п. 1.2.20 ТУ» выдается сообщение «Да» и отсутствуют ошибки обмена в окне «Состояние обмена».

- 4.7 Проверка стартового тока (чувствительности)
- 4.7.1 Проверку стартового тока проводить для прямого и обратного направления активной и реактивной энергии (только активной для однонаправленных счетчиков) при номинальных фазных напряжениях, приведенных в таблице 4, токе в каждой последовательной цепи равном 0.001 Іном $(0.004I_{6})$ для счетчиков непосредственного включения) и коэффициенте мощности равном единице при симметричной нагрузке.
- 4.7.2 Испытательные выходы счетчиков должны быть сконфигурированы для работы в режиме поверки В, как описано в п. 3.10. К испытательным выходам счетчиков должны быть подключены светодиодные индикаторы по схеме, приведенной на рисунке 7.

VD1, VD2 – Индикаторы единичные АЛ307БМ R1, R2- Резисторы C2-33H-0,25-1 кОм±5 %

Рисунок 7 - Схема подключения счетчика для проверки начального запуска и самохода

Результаты поверки считают положительными, если счетчики начинают и продолжают регистрировать токи и соответствующие мощности в каждой фазе, а период следования импульсов на испытательных выходах менее значений, указанных в таблице 4.

Таблица 4-Период следования импульсов

Ток, А	Номинальное напряжение, В	Период следования импульсов, с							
	Для счетчиков трансформаторного включения								
$I_{\text{HOM}}=1,0$	57,7	30							
$I_{\text{HOM}}=1,0$	115	15							
I _{HOM} =5,0	57,7	30							
$I_{\text{HOM}}=5,0$	115	15							
I _{HOM} =1,0	120	60							
I _{HOM} =1,0	230	30							
I _{HOM} =5,0	120	60							
I _{HOM} =5,0	230	30							
	Для счетчиков непосредственно	ого включения							
$I_{6} = 5.0$	120	75							
$I_6 = 5,0$ $I_6 = 5,0$	230	40							

- 4.8 Проверка отсутствия самохода
- Проверку отсутствия самохода проводить при отсутствии токов в последовательных цепях для значения фазных напряжений 1,15 Uном:
 - 132 В для счетчиков с Uном (57,7-115) В;
 - 265 В для счетчиков с Uном (120-230) В.
- 4.8.2 Проверку проводить по каждому виду энергии обоих направлений (для однонаправленного счетчика только активной энергии). В качестве индикаторов использовать светодиодные индикаторы, подключенные к испытательным выходам по схеме, приведенной на рисунке 7.
- Перед началом испытаний провести конфигурирование испытательных выходов для работы в режиме поверки В, как указано в п. 3.10. После установки величин фазных напряжений, снять напряжения с параллельных цепей счетчика.
- 4.8.4 Через 10 с подать напряжения на параллельные цепи счетчика и включить секундомер. Дождаться включения любого первого светодиодного индикатора, подключенного к испытательному выходу и остановить секундомер.

Результаты поверки считают положительными, если светодиод не включился за время, рассчитанное по формуле (1) для счетчиков активной энергии классов точности 0,5S и 1, по формуле (2) для счетчиков реактивной энергии классов точности 1 и 2, и приведенное в таблице 5 для счетчиков соответствующего варианта исполнения.

$$\Delta t \ge \frac{600 \times 10^6}{k \cdot m \cdot U_{\text{max}} \cdot I_{\text{max}}},\tag{1}$$

$$\Delta t \ge \frac{600 \times 10^6}{k \cdot m \cdot U_{\text{HOM}} \cdot I_{\text{MAKC}}},$$

$$\Delta t \ge \frac{480 \times 10^6}{k \cdot m \cdot U_{\text{HOM}} \cdot I_{\text{MAKC}}},$$
(2)

- время анализа самохода, мин; где Dt

> - число измерительных элементов; m

импульсов выходного устройства на 1 кВт-ч, имп./(кВт-ч) (имп./(квар·ч));

Uном - номинальное напряжение;

Імакс - максимальный ток, А.

Таблица 5 – Время анализа самохода

Класс точности	Максимальный	Номинальное	Время анализа самохода, с
актив./реактив.	ток, А	напряжение, В	
0,5S/1	2 или 10	115	65/52
0,5S/1	2 или 10	230	130/104
1/2	100	230	65/52

- 4.9 Определение погрешности измерения активной и реактивной энергии и мощности, вызываемой изменением тока, в нормальных условиях, определение погрешности счетчика с однофазной нагрузкой при симметрии многофазных напряжений, проверка класса точности, определение погрешности измерения напряжений, токов и частоты сети
- 4.9.1 Определение погрешности измерения активной энергии прямого направления проводить методом непосредственного сличения с эталонным счетчиком поверочной установки по импульсам телеметрии при значениях информативных параметров входного сигнала, приведенных в таблице 6 для счетчиков трансформаторного включения и в таблице 7 для счетчиков непосредственного включения.
- 4.9.2 Определение погрешности измерения активной энергии обратного направления проводить при значениях информативных параметров входного сигнала, соответствующих испытанию № 4 таблиц 6 и 7.

Определение погрешности измерения активной мощности прямого и обратного направления проводить методом сравнения со значением активной мощности, измеренной эталонным счетчиком поверочной установки при значениях информативных параметров входного сигнала соответствующих испытанию \mathfrak{N}_{2} 4 таблиц 6 и 7.

Погрешность измерения активной мощности δР, %, рассчитывать по формуле (3)

$$\delta P = \frac{P_{\text{W3M}} - P_0}{P_0} \cdot 100 \,, \tag{3}$$

где δP - относительная погрешность измерения активной мощности, %;

Ризм - значение активной мощности, измеренное поверяемым счетчиком, Вт;

Ро - значение активной мощности, измеренное эталонным счетчиком, Вт.

4.9.3 Допускается проверку по предыдущему пункту (п. 4.9.1) проводить для прямого направления активной мощности при значениях информативных параметров входного сигнала, приведенных в таблицах 6 и 7, и испытание № 4 для обратного направления активной мощности. При этом для прямого и обратного направления активной энергии проводить испытание № 4 с целью проверки функционирования испытательных выходов. Остальные испытания не проводятся, а погрешности гарантируются схемно-техническими решениями.

Результаты поверки считаются положительными, если счетчик соответствует классу точности, погрешности измерений активной энергии и мощности прямого и обратного направления не превышают значений, приведенных в таблицах 6 и 7, а разность между значениями погрешности при однофазной нагрузке и значениями погрешности при симметричной многофазной нагрузке при номинальном (базовом) токе и коэффициенте мощности, равном 1, не превышает:

- 1,0 % для класса точности 0,5S счетчиков активной энергии;
- 1,5 % для класса точности 1 счетчиков активной энергии.
- 4.9.4 Определение погрешности измерения реактивной энергии (кроме однонаправленных счетчиков) проводить методом непосредственного сличения с эталонным счетчиком поверочной установки по импульсам телеметрии при значениях информативных

параметров входного сигнала, соответствующих испытаниям № 4, 5 таблиц 6 и 7 для прямого направления реактивной энергии, и испытание № 4 для обратного направления реактивной энергии.

Определение погрешности измерения реактивной мощности прямого и обратного направления проводить методом сравнения со значением реактивной мощности, измеренной эталонным счетчиком поверочной установки при значениях информативных параметров входного сигнала соответствующих испытанию \mathbb{N} 4 таблиц 6 и 7.

Погрешность измерения реактивной мощности δQ, %, рассчитывать по формуле (4)

$$\delta Q = \frac{Q_{\text{M3M}} - Q_0}{Q_0} \cdot 100, \qquad (4)$$

где δQ - относительная погрешность измерения реактивной мощности, %;

Qизм - значение реактивной мощности, измеренное поверяемым счетчиком, вар;

Qo - значение реактивной мощности, измеренное эталонным счетчиком, вар.

Результаты поверки считаются положительными, если счетчик соответствует классу точности, погрешности измерений реактивной энергии и мощности прямого и обратного направления не превышают значений, приведенных в таблицах 6 и 7.

Таблица 6— Значения информативных параметров входного сигнала при испытаниях счетчиков трансформаторного включения активной и реактивной энергии и мощности прямого и обратного направления

№	Информа	тивные парам	етры входного	-			испыта-
Π/Π		сигнала		новной погр	ешности, %	тельных	выходов
	Напря- жение, В	Ток, А	Коэффициент мощности	активной энергии (мощности) 0,5S	реактивной энергии (мощности) 1	A	В
1			1,0	±0,5	±1,0	+	-
2	3×Uном	3×Імакс	0,5 (инд.)	±0,6	±1,0	+	-
3			0,5 (емк.)	±0,6	±1,0	+	-
4			1,0	±0,5	±1,0	-	+
5	3×Uном	3×Іном	0,5 (инд.)	±0,6	±1,0	-	+
6			0,5 (емк.)	±0,6	±1,0	-	+
7			1,0	±0,5	±1,0	-	+
8	3×Uном	3×0,05Іном	0,5 (инд.)	±0,6	±1,0	-	+
9			0,5 (емк.)	±0,6	±1,0	-	+
10	2.41.	3×0,01Іном	1,0	±1,0	±1,5	-	+
11	3×Uном	3×0,02Іном	0,5 (инд.)	±1,0	±1,5	-	+
12	3×Uном	1×Імакс	1,0	±0,6	±1,5	-	+
13	3×Uном	1×Іном	1,0	±0,6	±1,5	-	+
14	3×Uном	1×0,05Іном	0,5 (инд.)	±1,0	±1,5	-	+

Примечания

- 1 При испытаниях время измерения устанавливать равное 10 с. Изменение погрешности при двух, трех измерениях не должно превышать 0,1 допускаемого значения погрешности, указанного в таблице.
- 2 Конфигурирование испытательных выходов для работы в основном режиме А и поверочном режиме В проводить согласно п. 3.10.
- 3 Поверку счетчиков с Uном $3\times(57-115)/(100-200)$ В проводить при номинальном напряжении 57,7 В.
- 4 Поверку счетчиков с Uном $3\times(120\text{-}230)/(208\text{-}400)$ В проводить при номинальном напряжении 230 В или 220 В.
- 5 Испытания №№ 12-14 с однофазной нагрузкой при симметрии фазных напряжений проводить последовательно для каждой из фаз отдельно.
- 6 Погрешности счетчиков при приемо-сдаточных испытаниях не должны превышать значений, приведенных в таблице с коэффициентом 0,8.
- 7 Погрешности счетчиков при периодических и внеочередных поверках не должны превышать пределов, приведенных в таблице.
- 8 Для комбинированных и однонаправленных счетчиков испытание № 4 для прямого направления активной энергии проводить с использованием испытательного выхода канала 0, а для обратного направления активной энергии с использованием испытательного выхода канала 1 с целью проверки функционирования испытательных выходов.

Таблица 7 - Значения информативных параметров входного сигнала при испытаниях счетчиков непосредственного включения активной и реактивной энергии и мощности прямого и обратного направления

Номер	Информати	вные параме	гры входного	Пределы до	пускаемой	Режи	м ис-
испы-		сигнала		основной погрешности		пытате	ельных
тания				измерения, %		выходов	
	Напряжение,	Ток,	Коэффициент	Активной	Реактивной		
	В	A	мощности	энергии	энергии	Α	В
	Б	71	мощности	(мощности)	(мощности)		
1			1,0	±1,0	±2,0	+	-
2	3×Uном	3×Імакс	0,5 (инд.)	±1,0	±2,0	+	-
3			0,5 (емк.)	±1,0	±2,0	+	-
4			1,0	±1,0	±2,0	-	+
5	3×Uном	$3 \times I_{\delta}$	0,5 (инд.)	±1,0	±2,0	-	+
6			0,5 (емк.)	±1,0	±2,0	-	+
7			1,0	±1,0	±2,0	-	+
8	3×Uном	$3\times0,11_{6}$	0,5 (инд.)	±1,0	±2,0	-	+
9			0,5 (емк.)	±1,0	±2,0	-	+
10	3×Uном	3×0,05I ₆	1,0	±1,5	±2,5	-	+
11	3×Uном	1×Імакс	1,0	±2,0	±3,0	-	+
12	3×Uном	$1 \times I_{\delta}$	1,0	±2,0	±3,0	-	+
13	3×Uном	$1\times0,1I_{6}$	0,5 (инд.)	±2,0	±3,0	-	+

Примечания

- 1 При испытаниях время измерения устанавливать равное 10 с. Изменение погрешности при двух, трех измерениях не должно превышать 0,1 допускаемого значения погрешности, указанного в таблице.
- 2 Конфигурирование испытательных выходов для работы в основном режиме А и поверочном режиме В проводить согласно п. 3.10.
- 3 Испытания счетчиков проводить при номинальном напряжении 230 В или 220 В.
- 4 Испытания №№ 11-13 с однофазной нагрузкой при симметрии фазных напряжений проводить последовательно для каждой из фаз отдельно.
- 5 Для однонаправленных и комбинированных счетчиков испытание № 4 для прямого направления активной энергии проводить с использованием испытательного выхода канала 0, а для обратного направления активной энергии с использованием испытательного выхода канала 1 с целью проверки функционирования испытательных выходов.
- 6 Погрешности счетчиков при приемо-сдаточных испытаниях не должны превышать значений, приведенных в таблице с коэффициентом 0,8.
- 7 Погрешности счетчиков при периодических и внеочередных поверках не должны превышать пределов, приведенных в таблице.
- 8 При периодических и внеочередных поверках допускается испытания №№ 1-3 проводить на токе 0,5Імакс. При этом погрешность измерения на максимальном токе гарантируется схемно-техническими решениями.

- 4.9.5 Определение погрешности измерения фазных напряжений проводить при номинальном (базовом) токе и коэффициенте мощности равном единице методом сравнения со значениями напряжений, измеренными эталонным счетчиком поверочной установки для трех значений напряжений: Uном, 0,8Uном, 1,15Uном. Проверку проводить для каждой фазы при значении номинального напряжения:
 - 57,7 B для счетчиков с номинальным напряжением 3×(57-115)/(100-200) B;
 - 230 B для счетчиков с номинальным напряжением 3×(120-230)/(208-400) B.

Погрешность измерения напряжения би, %, рассчитывать по формуле (5)

$$\delta u = \frac{U_{\text{M3M}} - U_0}{U_0} \cdot 100, \qquad (5)$$

где би – относительная погрешность измерения напряжения, %;

- значение фазного напряжения, измеренное поверяемым счетчиком, В;

Uo — значение фазного напряжения, измеренное эталонным счетчиком, B.

Результаты поверки считаются положительными, если вычисленные погрешности измерения фазных напряжений не превышают ± 0.4 % для счетчика трансформаторного включения, ± 0.9 % - для счетчика непосредственного включения.

4.9.6 Определение погрешности измерения тока проводить методом сравнения со значением тока, измеренным эталонным счетчиком. Проверку проводить для тока каждой линии при номинальном напряжении, коэффициенте мощности равном единице и для трех значений тока: Імакс, Іном, 0.01Іном (Імакс, $2I_6$, $0.05I_6$). Погрешность измерения тока δi , %, рассчитывать по формуле (δ)

$$\delta i = \frac{I_{\text{M3M}} - I_{\text{O}}}{I_{\text{O}}} \cdot 100, \tag{6}$$

где бі - погрешность измерения тока, %;

Іизм – значение тока, измеренное поверяемым счетчиком, А;

Io — значение тока, измеренное эталонным счетчиком, A.

При работе на установке УАПС-1 для счетчиков непосредственного включения допускается проводить измерения для тока в каждой фазе при трех значения токов: 0,5Iмакс, I_{6} , 0,05I $_{6}$.

Результаты поверки считают положительными, если вычисленные погрешности измерения токов не превышают значений, указанных в таблице 8.

Таблина 8

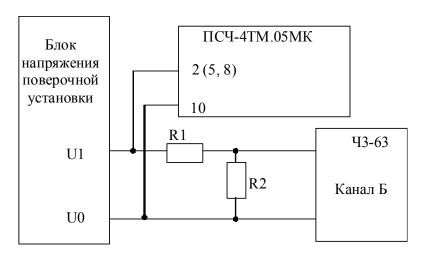
Значение тока	Пределы погрешности измерения тока, %, для счетчиков			
эначение тока	трансформаторного включения	непосредственного включения		
Імакс	±0,4	±0,9		
0,5Імакс	-	±0,9		
2I ₆	-	±0,9		
Іном (І _б)	±0,4	±0,9		
0,05I ₀	-	±1,85		
0,01Іном	±2,38	-		

4.9.7 Определение погрешности измерения частоты проводить методом сравнения со значением частоты, измеренной частотомером Ч3-63 (рисунок 8), при номинальном напряжении 230 В, номинальном (базовом) токе и коэффициенте мощности равном единице. Погрешность измерения частоты δf , %, рассчитывать по формуле (7)

$$\delta f = \frac{F_{\text{M3M}} - F_0}{F_0} \cdot 100, \qquad (7)$$

где δf - относительная погрешность измерения частоты, %;

Fизм - значение частоты, измеренное поверяемым счетчиком, Гц;


Fo - значение частоты, измеренное частотомером Ч3-63, Гц.

Частотомером Ч3-63 измерить период фазного напряжения То. Переключатели частотомера установить в следующие состояния: МЕТКИ ВРЕМЕНИ в состояние « 10^{-6} », МНО-ЖИТЕЛЬ ПЕРИОДОВ в состояние « 10^{2} ». Частоту сети вычислять по формуле (8)

$$Fo = \frac{10^3}{To}, \Gamma II$$
 (8)

где То – период фазного напряжения, измеренный частотомером, мс.

Результаты поверки считают положительными, если погрешность измерения частоты не превышает 0.05 %.

R1 – резистор C2-33H-1-68 кОм ±5 %

R2 – резистор C2-33H-1-2,2 кОм ±5 %

Рисунок 8 – Схема подключения частотомера Ч3-63 для измерения частоты

- 4.9.8 Определение погрешности измерения активной и реактивной мощности, напряжения и тока целесообразно проводить в автоматизированном режиме с применением программы «Конфигуратор СЭТ-4ТМ» и формы «Измеритель погрешности», внешний вид которой приведен на рисунке 9.
- 4.9.8.1 Установить флажки в форме «Измеритель погрешности», как показано на рисунке 9.
- 4.9.8.2 В строке «Эталон» над каждым интересующим параметром ввести эталонное значение, измеренное внешним эталонным средством, относительно которого нужно вычислить погрешность измерения счетчика.
- 4.9.8.3 Нажать кнопку «Прочитать из прибора», расположенную на панели инструментов генеральной формы. При этом «Конфигуратор СЭТ-4ТМ» производит чтение приведенных в окнах формы параметров, их отображение в соответствующих окнах, усреднение и

вычисление погрешности измерения относительно введенных эталонных значений. Рассчитанные относительные погрешности индицируются в соответствующих окнах с размерностью «%».

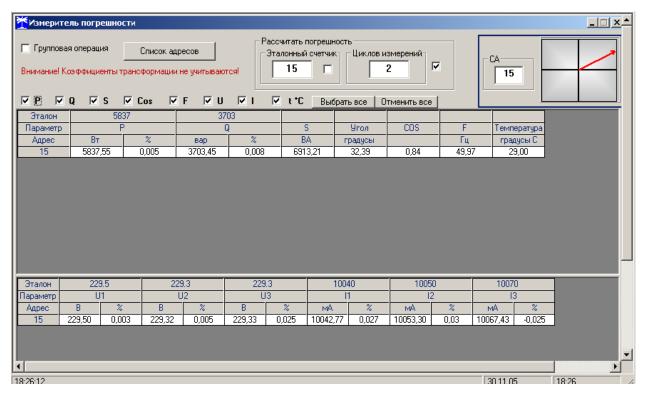
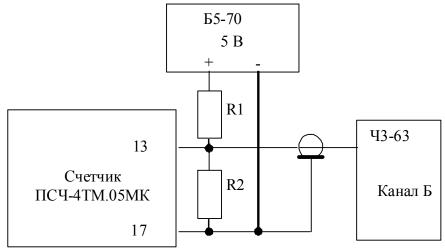



Рисунок 9 – Форма «Измеритель погрешности»

- 4.9.8.4 Для определения погрешностей группы счетчиков (до 6 штук) их сетевые адреса нужно указать в форме «Список адресов», установить флажок «Групповая операция» и повторить п. 4.9.8.3. При этом вычисленные погрешности каждого поверяемого счетчика будут отображаться на отдельной строке формы «Измеритель погрешности».
 - 4.10 Определение точности хода встроенных часов
- 4.10.1 Определение точности хода часов во включенном состоянии счетчика при нормальной температуре окружающей среды проводить измерением периода сигнала времязадающего генератора на испытательном выходе счетчика согласно раздела 5 ГОСТ Р МЭК 61038.
- 4.10.1.1 Для проведения проверки собрать схему, приведенную на рисунке 10, при этом счетчик должен быть подключен к компьютеру с установленным ПО «Конфигуратор СЭТ-4ТМ» по схеме, приведенной в приложении Б. Проверку проводить при номинальном напряжении и частоте.
- 4.10.1.2 Подготовить компьютер к работе в соответствии с требованиями п.п. 3.8, 3.9. настоящей методики.

R1 – резистор C2-33H-0,25-1,0 кОм ± 5 %

R2 – резистор C2-33H-0,25-4,3 кОм ± 5 %

Рисунок 10 – Схема подключения оборудования для проверки точности хода часов

4.10.1.3 Перед началом испытаний, с помощью программы «Конфигуратор СЭТ-4ТМ», формы «Конфигурирование испытательных выходов и входов» настроить испытательный выход канал 0 (контакты «13», «17» колодки счетчика) на формирование сигнала контроля точности хода часов, как показано на рисунке 11.

🌴 Конфигурирование испытательных выходс					
Конфигурирование Телеуг			іравление и теле		
Сетевой адрес	Режим испытательных выходов Определяется входом контакты 11,15		Канал О Выход Контакты 13,17		
6			Контр. точн. хода часов		

Рисунок 11

- 4.10.1.4 Посредством формы «Проверка точности хода часов» из меню «Поверка», вкладки «Расчет точности хода» прочитать и запомнить заводскую константу коррекции точности хода часов (Кктх), введенную в счетчик на этапе регулировки.
 - 4.10.1.5 Установить органы управления частотомера Ч3-63 в следующие состояния:
- переключатель РОД РАБОТЫ в состояние «Т» (измерение периода по каналу Б);
- ручку ВРЕМЯ ИНД. установить в крайнее состояние, вращая против часовой стрелки;
- переключатель МЕТКИ ВРЕМЕНИ в состояние «10⁻⁷»;
- переключатель ВРЕМЯ СЧЕТА ms/МНОЖ в состояние «10³»:
- ручку УРОВЕНЬ (КАНАЛ Б) установить в середину сегмента между меткой «+» и крайним (по часовой стрелке) состоянием ручки.
- 4.10.1.6 Произвести измерение периода времязадающего генератора Ти при помощи частотомера Ч3-63 и запомнить результат измерения до четвертого знака после запятой.
 - 4.10.1.7 Точность хода часов (Δt_H) рассчитать по формуле (9)

$$\Delta_{\text{tH}} = \left(\frac{T_3}{T_W \cdot \left(1 + K_{KTX} \cdot 10^{-6}\right)} - 1\right) \times 86400, \text{ c/cyr}$$
 (9)

где $\Delta t_{\rm H}$ - точность хода часов, с/сут;

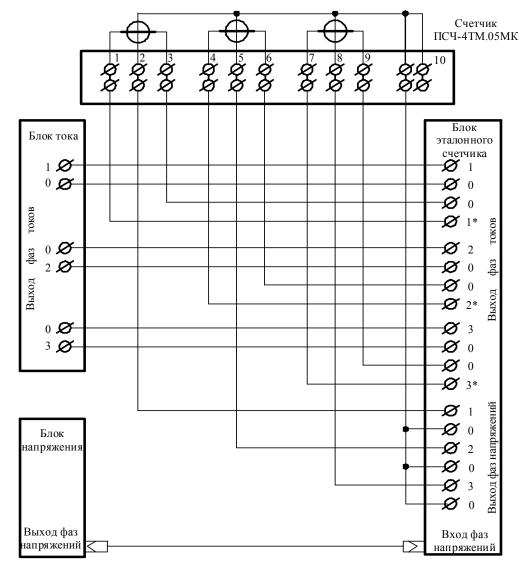
- Тэ значение эталонного периода сигнала времязадающего генератора, которое при частоте 512 Гц составляет 1953,125 мкс;
- Ти значение измеренного частотомером периода сигнала времязадающего генератора (без учета коррекции точности хода), мкс;
- Кктх константа коррекции точности хода, введенная в счетчик на стадии регулировки и прочитанная в п. 4.10.1.4;

86400 – число секунд в сутках с размерностью с/сут.

Результаты поверки считают положительными, если точность хода часов в нормальных условиях, посчитанная по формуле (9), не превышает ± 0.5 с/сут.

ВНИМАНИЕ! После внеочередной и периодической поверки восстановить запомненные пользовательские параметры, если они были изменены в ходе поверки:

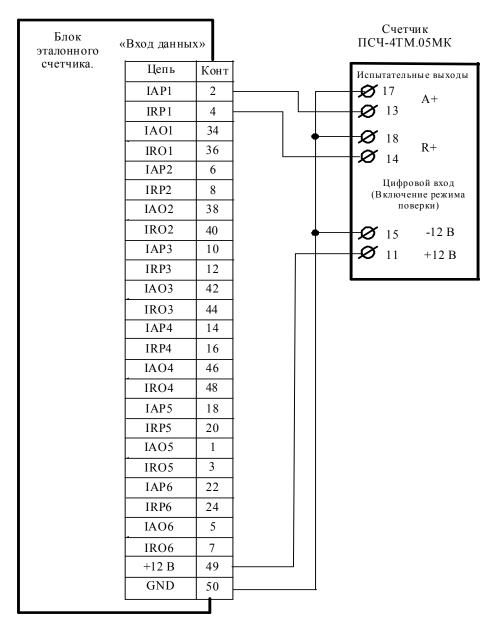
- скорость обмена по RS-485, п. 3.9.6;
- флаг «Однонаправленный режим учета по модулю» п. 3.9.8;
- конфигурацию испытательных выходов и цифрового входа п. 3.10.1;


5 Оформление результатов поверки

- 5.1 Счетчик, прошедший поверку и удовлетворяющий требованиям настоящей методики поверки, признают годным к эксплуатации, его пломбируют с нанесением знака поверки и делают запись в формуляре, заверяемой подписью поверителя и знаком поверки (оттиск), в соответствии с Приказом Минпромторга № 1815 от 02.07.15 г.
- 5.2 Если по результатам поверки счётчик, признан непригодным к применению, выписывается извещение о непригодности к применению.

Приложение А (обязательное)

Схемы подключения счетчика к поверочной установке



Примечания

- 1 Блок тока, блок напряжения и блок эталонного счетчика входят в состав установки УАПС-1М.
- 2 Для подключения нескольких поверяемых счетчиков (до 6 штук) к установке по схеме рисунок А.1 необходимо одноименные цепи напряжения подключать параллельно, а одноименные цепи тока подключать последовательно.

Рисунок А.1 - Схема подключения цепей тока и напряжения счётчика непосредственного включения для определения погрешности измерения активной и реактивной энергии и мощности прямого и обратного направления, частоты, напряжения и тока

Примечания

- 1 Для подключения нескольких поверяемых счетчиков (до 6 штук) к блоку эталонного счетчика по схеме рисунок А.1 необходимо испытательные выходы каждого счетчика подключить к соответствующей группе входа данных (IAPn, IRPn. IAOn, IROn) блока эталонного счетчика установки УАПС-1М.
- 2 Одноименные цифровые входы "Включение режима поверки" испытуемых счетчиков должны быть объединены.

Рисунок А.2 - Схема подключения испытательных выходов счётчика непосредственного включения к блоку эталонного счетчика для проверки погрешности измерения активной и реактивной энергии прямого и обратного направления

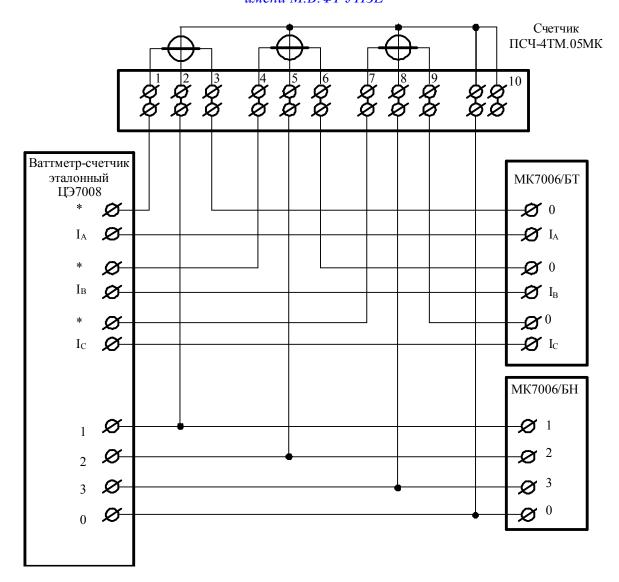


Рисунок А.3 - Схема подключения счётчика трансформаторного включения для определения погрешности измерения активной энергии и мощности прямого и обратного направления, частоты, напряжения и тока

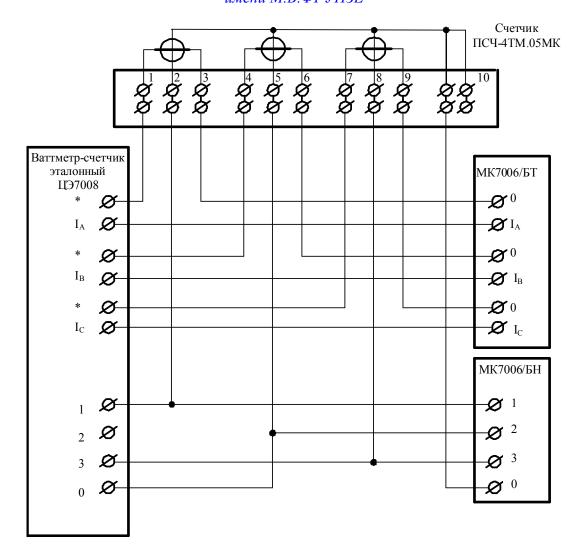
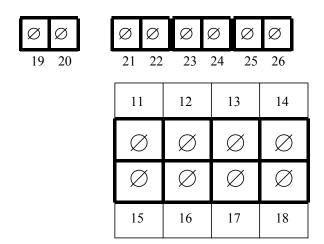



Рисунок А.4 - Схема подключения счётчика трансформаторного включения для определения погрешности измерения реактивной энергии и мощности прямого и обратного направления

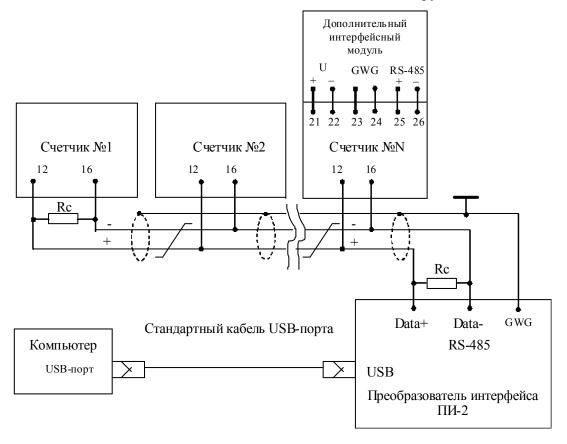

Кон такт	Цепь	Поляр ность	Примечание
11 15	Цифровой вход	+	Постоянное напряжение от 0 до 30 В
12 16	RS-485 линия A RS-485 линия B	+	Минимум +0,3 В при отсут- ствии обмена
13 17	Испытательный выход канала 0 (по умолчанию A+)	+	- Имакс=30 В, Імакс=50 мА
14 18	Испытательный выход канала 1 (по умолчанию R+)	+	- Имакс=30 В, Імакс=50 мА
19 20	Резервное питание	2 2	(100-265) В переменного или постоянного тока
21 22	Питание дополнительных интерфейсных модулей	+	Постоянное напряжение 6 В, Імакс=500 мА
23	RS-485 GWG		
24	RS-485 GWG		Минимум +0,3 В между А и
25	RS-485 линия A	+	В при отсутствии обмена
26	RS-485 линия В	-	

Рисунок А.5 - Расположение и назначение контактов колодки счетчика для подключения интерфейса RS-485, испытательных выходов, цифрового входа и резервного питания

Приложение Б (рекомендуемое)

Схема подключения счетчиков к компьютеру

Примечания

- 1 Rc согласующий резистор 120 Ом.
- 2 Монтаж вести экранированной витой парой с волновым сопротивлением ρ =120 Ом.
- 3 Допускается применение других преобразователей интерфейса, обеспечивающих автоматическое переключение направления передачи и устойчивую работу на выбранной скорости.
- 4 Если применяемый преобразователь интерфейса не имеет вывода GWG, то экран витой пары не подключается к преобразователю, но заземляется со стороны преобразователя.
 - 5 Множественные соединения экрана витой пары с землей НЕДОПУСТИМЫ.
- 6 Постоянное напряжение между контактами «12» и «16» при подключенном преобразователе интерфейса, включенном счетчике и при отсутствии обмена по каналу связи должно быть не менее $0.3~\mathrm{B}.$
 - 7 Полярность напряжения должна соответствовать указанной на схеме.

Рисунок Б.1 - Схема подключения счетчиков к компьютеру через интерфейс RS-485

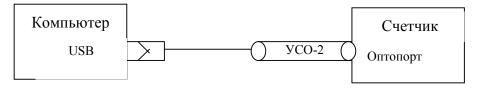


Рисунок Б.2- Схема подключения счетчика к компьютеру через оптопорт